If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-4w-224=0
a = 4; b = -4; c = -224;
Δ = b2-4ac
Δ = -42-4·4·(-224)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-60}{2*4}=\frac{-56}{8} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+60}{2*4}=\frac{64}{8} =8 $
| (4x-8)+(x+4)=180 | | 17y=476 | | 5+15x+45x^2=0 | | 3(q+7)=21 | | 4/14x+x=780 | | 5x-9=12x-6 | | 8x+48=10x | | -0.5x^2+27=0 | | |6x-5|=-16 | | 5(x+10)=4*35 | | 3(y-11)=12 | | 4.9t^2+5.2t=0 | | 3y-2=12y+34 | | 4(x+5)-9=16-4x-5+8x | | 13x^2-169x=0 | | -21(x+1)=-2x+5 | | 3/4(2y+8)-8=13 | | 4x^2-16x-224=0 | | 1.9x-12=3x | | 7/x=13 | | 9^x=3^5x-6 | | 4/5=n+10/35 | | 1e+46=999999999999999999999999999999 | | 303/4+w=173/4 | | X+1÷x+3=x-3÷4 | | 124=4(-5x) | | h/3+8=13 | | 1/9w=14/9 | | w/2.6=5 | | x-47/8=41/8 | | -6u=28 | | 11/12x=81/4 |